Scientific specialties in Green Chemistry

Main Article Content

Leonardo Victor Marcelino
Adilson Luiz Pinto
Carlos Alberto Marques


Objective. This paper presents an overview of Green Chemistry research from 1990 to 2017, identifying its specialties, comparing their relative importance, and inferring emergent trends.

Design/Methodology/Approach. Co-citation analysis of 14,142 documents retrieved in Web of Science by CiteSpace software, using network analysis to describe research fronts by clustering, their relevance by clusters indicators, and emergence by citation burstiness.

Results/Discussion. Sixteen clusters were found and then grouped into six big specialties. Some specialties are more persistent and general (e.g. GC Characterization, Metal Catalysis, and Microwave Activation) and others are more recent and focused (e.g. Deep Eutectic Solvents). Mechanochemical and Photochemistry are emergent trends in Green Chemistry.

Conclusions. This paper presents a more quantitative/objective panorama of GC research, comparing the relevance of research fronts inside the field, and helping future researchers and decision-makers in further developments of GC. CiteSpace showed some limitations in clustering. Data collection was hurdled by changes in the Keyword Plus algorithm in Web of Science and by the lack of authors keywords in main journals of the field. Although large, the dataset was restricted to the Web of Science database.

Originality/Value. To the best of our knowledge, this is the first quantitative analysis of research specialties of GC. It advances past peer evaluation of the field by using indicators and metrics to describe the emergence, extension, and decay of specialties.


Download data is not yet available.

Article Details

How to Cite
Marcelino, L. V., Pinto, A. L., & Marques, C. A. (2020). Scientific specialties in Green Chemistry. Iberoamerican Journal of Science Measurement and Communication, 1(1), 005.
Original articles


Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, (1), 70-71.

Abramo, G., D’Angelo, C. A., & Reale, E. (2019). Peer review versus bibliometrics: Which method better predicts the scholarly impact of publications?. Scientometrics, 121(1), 537-554.

ACS. (2015). History of Green Chemistry. American Chemical Society Home Page. Available at

Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green chemistry, 12(9), 1493-1513.

Alonso, D. M., Wettstein, S. G., & Dumesic, J. A. (2013). Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 15(3), 584-595.

Anastas, P., & Eghbali, N. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1), 301-312.

Erythropel, H. C., Zimmerman, J. B., de Winter, T. M., Petitjean, L., Melnikov, F., Lam, C. H., ... & Pincus, L. N. (2018). The Green ChemisTREE: 20 years after taking root with the 12 principles. Green chemistry, 20(9), 1929-1961.

Anastas, P., Han, B., Leitner, W., & Poliakoff, M. (2016). “Happy silver anniversary”: Green Chemistry at 25. Green Chemistry, 18(1), 12-13.

Anastas, P. T., & Kirchhoff, M. M. (2002). Origins, current status, and future challenges of green chemistry. Accounts of chemical research, 35(9), 686-694.

Anastas, P. T., & Warner, J.C. (1998). Green Chemistry: Theory and Practice. New York, N.Y: Oxford University Press.

Anastas, P. T., & Williamson, T. C. (1996). Green Chemistry: An Overview. In P. T. Anastas & T. C. Williamson (Eds.), Green Chemistry: Designing Chemistry for the Environment (pp. 1–17), vol. 626. Washington, DC: American Chemical Society.

Aupoix, A., Pégot, B., & Vo-Thanh, G. (2010). Synthesis of imidazolium and pyridinium-based ionic liquids and application of 1-alkyl-3-methylimidazolium salts as pre-catalysts for the benzoin condensation using solvent-free and microwave activation. Tetrahedron, 66(6), 1352-1356.

Baker, S. N., Baker, G. A., & Bright, F. V. (2002). Temperature-dependent microscopic solvent properties of ‘dry’and ‘wet’1-butyl-3-methylimidazolium hexafluorophosphate: correlation with ET (30) and Kamlet–Taft polarity scales. Green Chemistry, 4(2), 165-169.

Barwinski, B., Migowski, P., Gallou, F., Franciò, G., & Leitner, W. (2017). Continuous-Flow Hydrogenation of 4-Phenylpyridine to 4-Phenylpiperidine with Integrated Product Isolation Using a CO 2 Switchable System. Journal of Flow Chemistry, 7(2), 41-45.

Besson, M., Gallezot, P., & Pinel, C. (2014). Conversion of biomass into chemicals over metal catalysts. Chemical reviews, 114(3), 1827-1870.

Bhar, S., & Panja, C. (1999). Pinacol coupling of aromatic aldehydes and ketones.. An improved method in an aqueous medium. Green Chemistry, 1(6), 253-256.

Van den Bosch, S., Renders, T., Kennis, S., Koelewijn, S. F., Van den Bossche, G., Vangeel, T., ... & Schutyser, W. (2017). Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al 2 O 3 catalyst pellets during lignin-first fractionation. Green Chemistry, 19(14), 3313-3326.

Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chemistry, 12(4), 539-554.

Branco, L. C., Rosa, J. N., Moura Ramos, J. J., & Afonso, C. A. (2002). Preparation and characterization of new room temperature ionic liquids. Chemistry–A European Journal, 8(16), 3671-3677.;2-9

Brandt, A., Gräsvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green chemistry, 15(3), 550-583.

Busetti, A., Crawford, D. E., Earle, M. J., Gilea, M. A., Gilmore, B. F., Gorman, S. P., ... & Seddon, K. R. (2010). Antimicrobial and antibiofilm activities of 1-alkylquinolinium bromide ionic liquids. Green Chemistry, 12(3), 420-425.

Cadierno, V., Francos, J., & Gimeno, J. (2010). Ruthenium-catalyzed synthesis of β-oxo esters in aqueous medium: Scope and limitations. Green Chemistry, 12(1), 135-143.

Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for information Science and Technology, 57(3), 359-377.

Chen, C. (2017). Science mapping: a systematic review of the literature. Journal of Data and Information Science, 2(2), 1-40.

Chidambaram, M., & Bell, A. T. (2010). A two-step approach for the catalytic conversion of glucose to 2, 5-dimethylfuran in ionic liquids. Green Chemistry, 12(7), 1253-1262.

Chinese Academy of Sciences, and Clarivate Analytics. (2018). Research Fronts 2018. Beijing: Clarivate Analytics.

Clarivate Analytics, and Chinese Academy of Sciences. (2019). Research Fronts 2019. Beijing: CAS.

Clark, J. H. (1999). Green chemistry: challenges and opportunities. Green Chemistry, 1(1), 1-8.

Clark, J. H. (2002). Solid acids for green chemistry. Accounts of chemical research, 35(9), 791-797.

Clark, J., Sheldon, R., Raston, C., Poliakoff, M., & Leitner, W. (2014). 15 years of Green Chemistry. Green Chemistry, 16(1), 18-23.

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516-547.

Collinson, S. R., & Thielemans, W. (2010). The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin. Coordination chemistry reviews, 254(15-16), 1854-1870.

Corma, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical reviews, 107(6), 2411-2502.

Delidovich, I., & Palkovits, R. (2016). Catalytic versus stoichiometric reagents as a key concept for Green Chemistry. Green Chemistry, 18(3), 590-593.

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25.

Dunn, P. J. (2012). The importance of green chemistry in process research and development. Chemical Society Reviews, 41(4), 1452-1461.

Epicoco, M., Oltra, V., & Saint Jean, M. (2014). Knowledge dynamics and sources of eco-innovation: Mapping the Green Chemistry community. Technological Forecasting and Social Change, 81, 388-402.

Farmer, V., & Welton, T. (2002). The oxidation of alcohols in substituted imidazolium ionic liquids using ruthenium catalysts. Green chemistry, 4(2), 97-102.

Francisco, M., van den Bruinhorst, A., & Kroon, M. C. (2013). Low‐transition‐temperature mixtures (LTTMs): A new generation of designer solvents. Angewandte Chemie international edition, 52(11), 3074-3085.

Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chemical Society Reviews, 41(4), 1538-1558.

Gawande, M. B., Bonifácio, V. D., Luque, R., Branco, P. S., & Varma, R. S. (2013). Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chemical Society Reviews, 42(12), 5522-5551.

Gilding, M., & Pickering, J. (2011). May contain traces of biotech”:(re) defining the biotechnology field in Australia. In Proceedings of Australian Sociological Association Conference (p. 1). Available at

Gillet, S., Aguedo, M., Petitjean, L., Morais, A. R. C., da Costa Lopes, A. M., Łukasik, R. M., & Anastas, P. T. (2017). Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chemistry, 19(18), 4200-4233.

Gordon, C. M., & Ritchie, C. (2002). Indium and tin-mediated allylation in ionic liquids. Green chemistry, 4(2), 124-128.

Gu, Y., & Jérôme, F. (2013). Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chemical Society Reviews, 42(24), 9550-9570.

Hara, M. (2010). Biomass conversion by a solid acid catalyst. Energy & environmental science, 3(5), 601-607.

Hernaiz, M. J., Alcantara, A. R., Garcia, J. I., & Sinisterra, J. V. (2010). Applied biotransformations in green solvents. Chemistry–A European Journal, 16(31), 9422-9437.

Ho, K. P., Wong, W. L., Lee, L. Y. S., Lam, K. M., Chan, T. H., & Wong, K. Y. (2010). Manganese acetate in pyrrolidinium ionic liquid as a robust and efficient catalytic system for epoxidation of aliphatic terminal alkenes. Chemistry–An Asian Journal, 5(9), 1970-1973.

Holbrey, J. D., Reichert, W. M., Swatloski, R. P., Broker, G. A., Pitner, W. R., Seddon, K. R., & Rogers, R. D. (2002). Efficient, halide free synthesis of new, low cost ionic liquids: 1, 3-dialkylimidazolium salts containing methyl-and ethyl-sulfate anions. Green Chemistry, 4(5), 407-413.

Holbrey, J. D., & Rogers, R. D. (2002). Green Chemistry and Ionic Liquids: Synergies and Ironies. In R. D. Rogers & K. R. Seddon, Ionic Liquids (pp. 2–14). Washington, DC: American Chemical Society.

Hou, Z., Han, B., Liu, Z., Jiang, T., & Yang, G. (2002). Synthesis of dimethyl carbonate using CO 2 and methanol: enhancing the conversion by controlling the phase behavior. Green Chemistry, 4(5), 467-471.

Hu, B., Li, C., Zhao, S. X., Rong, L. M., Lv, S. Q., Liang, X., & Qi, C. (2010). Highly efficient procedure for the synthesis of fructone fragrance using a novel carbon based acid. Molecules, 15(8), 5369-5377.

Huang, X., Gonzalez, O. M. M., Zhu, J., Korányi, T. I., Boot, M. D., & Hensen, E. J. (2017). Reductive fractionation of woody biomass into lignin monomers and cellulose by tandem metal triflate and Pd/C catalysis. Green Chemistry, 19(1), 175-187.

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical reviews, 106(9), 4044-4098.

Ivanković, A., Dronjić, A., Bevanda, A. M., & Talić, S. (2017). Review of 12 principles of Green chemistry in practice. International Journal of Sustainable and Green Energy, 6(3), 39-48.

Jackson, W. R., Campi, E. M., & Hearn, M. T. (2016). Closing Pandora's box: chemical products should be designed to preserve efficacy of function while reducing toxicity. Green Chemistry, 18(15), 4140-4144.

James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., ... & Krebs, A. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 41(1), 413-447.

Jérôme, F., Ferreira, M., Bricout, H., Menuel, S., Monflier, E., & Tilloy, S. (2014). Low melting mixtures based on β-cyclodextrin derivatives and N, N′-dimethylurea as solvents for sustainable catalytic processes. Green Chemistry, 16(8), 3876-3880.

Jessop, P. G. (2016). The use of auxiliary substances (eg solvents, separation agents) should be made unnecessary wherever possible and innocuous when used. Green Chemistry, 18(9), 2577-2578.

Jessop, P. G., & Leitner, W. (1999). Supercritical fluids as media for chemical reactions. Chemical Synthesis Using Supercritical Fluids, 1-36.

Juárez, R., Concepción, P., Corma, A., Fornés, V., & García, H. (2010). Gold‐Catalyzed Phosgene‐Free Synthesis of Polyurethane Precursors. Angewandte Chemie International Edition, 49(7), 1286-1290.

Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition, 43(46), 6250-6284.

King, J., Holliday, R., & List, G. (1999). Hydrolysis of soybean oil. in a subcritical water flow reactor. Green Chemistry, 1(6), 261-264.

Kumaniaev, I., Subbotina, E., Sävmarker, J., Larhed, M., Galkin, M. V., & Samec, J. S. (2017). Lignin depolymerization to monophenolic compounds in a flow-through system. Green Chemistry, 19(24), 5767-5771.

Lancefield, C. S., Panovic, I., Deuss, P. J., Barta, K., & Westwood, N. J. (2017). Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chemistry, 19(1), 202-214.

Lange, J. P., Van Der Heide, E., van Buijtenen, J., & Price, R. (2012). Furfural—a promising platform for lignocellulosic biofuels. ChemSusChem, 5(1), 150-166.

Li, C. J. (2005). Organic reactions in aqueous media with a focus on carbon− carbon bond formations: a decade update. Chemical Reviews, 105(8), 3095-3166.

Li, C. J. (2016). Reflection and perspective on green chemistry development for chemical synthesis—Daoist insights. Green Chemistry, 18(7), 1836-1838.

Li, C. J., & Chen, L. (2006). Organic chemistry in water. Chemical Society Reviews, 35(1), 68-82.

Li, C., Ji, X., & Luo, X. (2019). Phytoremediation of heavy metal pollution: a bibliometric and scientometric analysis from 1989 to 2018. International Journal of Environmental Research and Public Health, 16(23), 4755.

Li, M., Chen, C., He, F., & Gu, Y. (2010). Multicomponent reactions of 1, 3‐cyclohexanediones and formaldehyde in glycerol: stabilization of paraformaldehyde in glycerol resulted from using dimedone as substrate. Advanced Synthesis & Catalysis, 352(2‐3), 519-530.

Li, M., & Chu, Y. (2017). Explore the research front of a specific research theme based on a novel technique of enhanced co-word analysis. Journal of Information Science, 43(6), 725-741.

Lindström, U. M. (2002). Stereoselective organic reactions in water. Chemical Reviews, 102(8), 2751-2772.

Liu, D. D., & Chen, E. Y. X. (2014). Organocatalysis in biorefining for biomass conversion and upgrading. Green Chemistry, 16(3), 964-981.

Llevot, A., & Meier, M. A. (2016). Renewability–a principle of utmost importance!. Green Chemistry, 18(18), 4800-4803.

Luo, R., Li, J., Zhao, Y., Fan, X., Zhao, P., & Chai, L. (2017). A critical review on the research topic system of soil heavy metal pollution bioremediation based on dynamic co-words network measures. Geoderma, 305, 281-292.

MacFarlane, D. R., Zhang, X., & Kar, M. (2016). Measure and control: molecular management is a key to the Sustainocene!. Green Chemistry, 18(21), 5689-5692.

Marion, P., Bernela, B., Piccirilli, A., Estrine, B., Patouillard, N., Guilbot, J., & Jérôme, F. (2017). Sustainable chemistry: how to produce better and more from less?. Green Chemistry, 19(21), 4973-4989.

Meehan, N. J., Sandee, A. J., Reek, J. N., Kamer, P. C., van Leeuwen, P. W., & Poliakoff, M. (2000). Continuous, selective hydroformylation in supercritical carbon dioxide using an immobilised homogeneous catalyst. Chemical Communications, (16), 1497-1498.

Miyaura, N., & Suzuki, A. (1995). Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical reviews, 95(7), 2457-2483.

Muldoon, M. J. (2010). Modern multiphase catalysis: new developments in the separation of homogeneous catalysts. Dalton Transactions, 39(2), 337-348.

Narayan, S., Muldoon, J., Finn, M. G., Fokin, V. V., Kolb, H. C., & Sharpless, K. B. (2005). “On water”: Unique reactivity of organic compounds in aqueous suspension. Angewandte Chemie International Edition, 44(21), 3275-3279.

Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the national academy of sciences, 103(23), 8577-8582.

North, M., Pasquale, R., & Young, C. (2010). Synthesis of Cyclic Carbonates from Epoxides and CO2. Green Chemistry 12(9), 1514–39.

O’Neil, M., & Ackland, R. (2020). Online Field Theory. In J. Hunsinger, M.M. Allen, & L. Klastrup, Second International Handbook of Internet Research (pp. 445–67). Dordrecht: Springer Netherlands.

Pelckmans, M., Renders, T., Van de Vyver, S., & Sels, B. F. (2017). Bio-based amines through sustainable heterogeneous catalysis. Green Chemistry, 19(22), 5303-5331.

Pena‐Pereira, F., & Namieśnik, J. (2014). Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. ChemSusChem, 7(7), 1784-1800.

Peng, L., Philippaerts, A., Ke, X., Van Noyen, J., De Clippel, F., Van Tendeloo, G., ... & Sels, B. F. (2010). Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catalysis Today, 150(1-2), 140-146.

Peters, M., & von der Assen, N. (2016). It is better to prevent waste than to treat or clean up waste after it is formed–or: what Benjamin Franklin has to do with “Green Chemistry”. Green Chemistry, 18(5), 1172-1174.

Poliakoff, M., Fitzpatrick, J. M., Farren, T. R., & Anastas, P. T. (2002). Green chemistry: science and politics of change. Science, 297(5582), 807-810.

Polshettiwar, V., & Varma, R. S. (2010). Green chemistry by nano-catalysis. Green Chemistry, 12(5), 743-754.

Price, D. J. D. S. (1965). Networks of scientific papers. Science, 510-515.

Prier, C. K., Rankic, D. A., & MacMillan, D. W. (2013). Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chemical reviews, 113(7), 5322-5363.

Procopio, A., De Nino, A., Nardi, M., Oliverio, M., Paonessa, R., & Pasceri, R. (2010). A new microwave-assisted organocatalytic solvent-free synthesis of optically enriched Michael adducts. Synlett, 2010(12), 1849-1853.

van Putten, R. J., Van Der Waal, J. C., De Jong, E. D., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical reviews, 113(3), 1499-1597.

Quadrelli, E. A. (2016). 25 years of energy and green chemistry: saving, storing, distributing and using energy responsibly. Green Chemistry, 18(2), 328-330.

Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., ... & Langan, P. (2014). Lignin valorization: improving lignin processing in the biorefinery. Science, 344(6185).

Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., ... & Mielenz, J. R. (2006). The path forward for biofuels and biomaterials. science, 311(5760), 484-489.

Sheldon, R. A., Lau, R. M., Sorgedrager, M. J., van Rantwijk, F., & Seddon, K. R. (2002). Biocatalysis in ionic liquids. Green Chemistry, 4(2), 147-151.

Rideout, D. C., & Breslow, R. (1980). Hydrophobic acceleration of Diels-Alder reactions. Journal of the American Chemical Society, 102(26), 7816-7817.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65.

Sakakura, T., Choi, J. C., & Yasuda, H. (2007). Transformation of carbon dioxide. Chemical Reviews, 107(6), 2365-2387.

Scott, J. L., & Lee, J. (2016). Appropriate lifetimes, fitting deaths. Green Chemistry, 18(23), 6157-6159.

Shaikh, A. A. G., & Sivaram, S. (1996). Organic carbonates. Chemical reviews, 96(3), 951-976.

Sheldon, R. A., Arends, I., & Hanefeld, U. (2007). Green Chemistry and Catalysis. (1 ed.). Weinheim: Wiley-VCH.

Sheldon, R. A. (2005). Green solvents for sustainable organic synthesis: state of the art. Green Chemistry, 7(5), 267-278.

Sheldon, R. A. (2007). The E factor: fifteen years on. Green Chemistry, 9(12), 1273-1283.

Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 41(4), 1437-1451.

Sheldon, R. A. (2016). Green chemistry and resource efficiency: towards a green economy. Green Chemistry, 18(11), 3180-3183.

Sheldon, R. A. (2017). The E factor 25 years on: the rise of green chemistry and sustainability. Green Chemistry, 19(1), 18-43.

Si, X., Lu, F., Chen, J., Lu, R., Huang, Q., Jiang, H., ... & Xu, J. (2017). A strategy for generating high-quality cellulose and lignin simultaneously from woody biomass. Green Chemistry, 19(20), 4849-4857.

Simon, M. O., & Li, C. J. (2012). Green chemistry oriented organic synthesis in water. Chemical Society Reviews, 41(4), 1415-1427.

Small, H. (1973). Co‐citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for information Science, 24(4), 265-269.

Small, H., & Griffith, B. C. (1974). The structure of scientific literatures I: Identifying and graphing specialties. Science studies, 4(1), 17-40.

Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical reviews, 114(21), 11060-11082.

Sneddon, H. (2016). Safety First. Green Chemistry, 18(19), 5082–85.

Soleimani, E., Khodaei, M. M., Batooie, N., & Baghbanzadeh, M. (2011). Water-prompted synthesis of alkyl nitrile derivatives via Knoevenagel condensation and Michael addition reaction. Green chemistry, 13(3), 566-569.

Stark, A., Ott, D., Kralisch, D., Kreisel, G., & Ondruschka, B. (2010). Ionic liquids and green chemistry: a lab experiment. Journal of Chemical Education, 87(2), 196-201.

Subramaniam, B. (2010). Exploiting neoteric solvents for sustainable catalysis and reaction engineering: opportunities and challenges. Industrial & engineering chemistry research, 49(21), 10218-10229.

Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., & Hara, M. (2010). Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sciences, 12(6), 1029-1034.

Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellose with ionic liquids. Journal of the American chemical society, 124(18), 4974-4975.

Swatloski, R. P., Visser, A. E., Reichert, W. M., Broker, G. A., Farina, L. M., Holbrey, J. D., & Rogers, R. D. (2002). On the solubilization of water with ethanol in hydrophobic hexafluorophosphate ionic liquids. Green Chemistry, 4(2), 81-87.

Takagaki, A., Iwatani, K., Nishimura, S., & Ebitani, K. (2010). Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst. Green chemistry, 12(4), 578-581.

Tanaka, K., & Toda, F. (2000). Solvent-free organic synthesis. Chemical Reviews, 100(3), 1025-1074.

Tobiszewski, M., Namieśnik, J., & Pena-Pereira, F. (2017). Environmental risk-based ranking of solvents using the combination of a multimedia model and multi-criteria decision analysis. Green Chemistry, 19(4), 1034-1042.

Trost, B. M. (1991). The atom economy--a search for synthetic efficiency. Science, 254(5037), 1471-1477.

Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A., & Poliakoff, M. (2012). Valorization of biomass: deriving more value from waste. Science, 337(6095), 695-699.

Tundo, P., & Selva, M. (2002). The chemistry of dimethyl carbonate. Accounts of chemical research, 35(9), 706-716.

Varma, R. S. (1999). Solvent-free organic syntheses. using supported reagents and microwave irradiation. Green chemistry, 1(1), 43-55.

Vidal, C., & García-Álvarez, J. (2014). Glycerol: a biorenewable solvent for base-free Cu (I)-catalyzed 1, 3-dipolar cycloaddition of azides with terminal and 1-iodoalkynes. Highly efficient transformations and catalyst recycling. Green Chemistry, 16(7), 3515-3521.

Wakaki, T., Oisaki, K., & Kanai, M. (2016). Elementary and systemic views of the generation of toxic substances. Green Chemistry, 18(13), 3681-3683.

Wang, J., Jaenicke, S., & Chuah, G. K. (2014). Zirconium–Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction. Rsc Advances, 4(26), 13481-13489.

Wasserscheid, P., & Keim, W. (2000). Ionic liquids—new “solutions” for transition metal catalysis. Angewandte Chemie International Edition, 39(21), 3772-3789.;2-5

Webb, P. B., Kunene, T. E., & Cole-Hamilton, D. J. (2005). Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chemistry, 7(5), 373-379.

Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical reviews, 99(8), 2071-2084.

Woodhouse, E. J., & Breyman, S. (2005). Green chemistry as social movement?. Science, Technology, & Human Values, 30(2), 199-222.

Liang, X., & Yang, J. (2009). Synthesis of a novel carbon based strong acid catalyst through hydrothermal carbonization. Catalysis letters, 132(3-4), 460.

Yan, N., Xiao, C., & Kou, Y. (2010). Transition metal nanoparticle catalysis in green solvents. Coordination Chemistry Reviews, 254(9-10), 1179-1218.

Zakzeski, J., Jongerius, A. L., & Weckhuysen, B. M. (2010). Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green chemistry, 12(7), 1225-1236.

Zhang, Q., Vigier, K. D. O., Royer, S., & Jerome, F. (2012). Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 41(21), 7108-7146.

Zhang, Y., Li, C., Ji, X., Yun, C., Wang, M., & Luo, X. (2020). The knowledge domain and emerging trends in phytoremediation: a scientometric analysis with CiteSpace. Environmental Science and Pollution Research, 27(13), 1-22.